Teleparallel Newton–Cartan gravity

Philip K. Schwartz

Institut für Theoretische Physik Leibniz Universität Hannover

Metric-Affine Frameworks for Gravity 2022, 28th June 2022

Motivation

- 'Non-relativistic' limit: $GR \rightarrow Newtonian gravity$
 - Textbook formulation: linearised gravity
 - Coordinate dependent

Motivation

- 'Non-relativistic' limit: $GR \rightarrow Newtonian gravity$
 - Textbook formulation: linearised gravity
 - Coordinate dependent
- Geometric formulation: $GR \xrightarrow{c \to \infty} Newton-Cartan gravity$
 - Galilei-relativistic spacetime geometry
 - Newtonian gravity described by curved connection

Motivation

- 'Non-relativistic' limit: $GR \rightarrow Newtonian$ gravity
 - Textbook formulation: linearised gravity
 - Coordinate dependent
- Geometric formulation: $GR \xrightarrow{c \to \infty} Newton-Cartan gravity$
 - Galilei-relativistic spacetime geometry
 - Newtonian gravity described by curved connection
- Geometric description of the $c \rightarrow \infty$ limit of teleparallel gravity?
 - Here: consider just TEGR
 - Read, Teh (2018): special case of our formalism; null-reduction instead of $c \rightarrow \infty$

J Read, NJ Teh: The teleparallel equivalent of Newton–Cartan gravity, arXiv:1807.11779, Class. Quantum Gravity **35**, 18LT01 (2018)

Outline

Recap of usual Newton–Cartan gravity

- Galilei manifolds
- Newton–Cartan gravity

2 Teleparallel Galilei connections

- Bargmann structures
- Teleparallel Newton–Cartan gravity

3 Relation to other theories

- Teleparallel NC from TEGR
- Recovering Newtonian gravity

PKS: Teleparallel Newton-Cartan gravity, in preparation

Galilei manifolds Newton–Cartan gravity

Recap of usual Newton–Cartan gravity

Recap of usual Newton–Cartan gravity

- Galilei manifolds
- Newton–Cartan gravity

2 Teleparallel Galilei connections

- Bargmann structures
- Teleparallel Newton–Cartan gravity

3 Relation to other theories

- Teleparallel NC from TEGR
- Recovering Newtonian gravity

PKS: Teleparallel Newton-Cartan gravity, in preparation

Galilei manifolds Newton-Cartan gravity

Galilei manifolds

• *Galilei manifold*: *M*, $\tau_{\mu} \neq 0$, $h^{\mu\nu}$ of signature (0+++), $\tau_{\mu}h^{\mu\nu} = 0$

Galilei manifolds Newton–Cartan gravity

Galilei manifolds

- *Galilei manifold*: M, $\tau_{\mu} \neq 0$, $h^{\mu\nu}$ of signature (0+++), $\tau_{\mu}h^{\mu\nu} = 0$
- ker $\tau = \{ spacelike vectors \}, others: timelike \}$
- $\int_{\gamma} \tau = \text{elapsed time along } \gamma$, *h* defines metric on ker τ

Galilei manifolds Newton–Cartan gravity

Galilei manifolds

- *Galilei manifold*: M, $\tau_{\mu} \neq 0$, $h^{\mu\nu}$ of signature (0+++), $\tau_{\mu}h^{\mu\nu} = 0$
- ker $\tau = \{ spacelike vectors \}, others: timelike$
- $\int_{\gamma} \tau = \text{elapsed time along } \gamma$, *h* defines metric on ker τ
- This talk: mostly assume $d\tau = 0$ (absolute time)

Galilei manifolds Newton–Cartan gravity

Galilei frames

• Homogeneous Galilei group:

$$Gal = O(3) \ltimes \mathbb{R}^3 \tag{1}$$

・ロト・4日・4日・4日・3日 うへで

Galilei manifolds Newton-Cartan gravity

Galilei frames

• Homogeneous Galilei group:

$$Gal = O(3) \ltimes \mathbb{R}^3 \tag{1}$$

• Galilei frame for (M, τ, h) : local frame $(\mathbf{e}_A) = (\mathbf{e}_t = v, \mathbf{e}_a)$ s.t. $\tau(v) = 1$, $h^{\mu\nu} = \delta^{ab} \mathbf{e}_a^{\mu} \mathbf{e}_b^{\nu}$

Galilei manifolds Newton–Cartan gravity

Galilei frames

• Homogeneous Galilei group:

$$Gal = O(3) \ltimes \mathbb{R}^3 \tag{1}$$

- *Galilei frame* for (M, τ, h) : local frame $(\mathbf{e}_A) = (\mathbf{e}_t = v, \mathbf{e}_a)$ s.t. $\tau(v) = 1$, $h^{\mu\nu} = \delta^{ab} \mathbf{e}_a^{\mu} \mathbf{e}_b^{\nu}$
- \rightsquigarrow Galilei frame bundle $G(M) \xrightarrow{\pi} M$, principal Gal-bundle

Galilei manifolds Newton-Cartan gravity

Galilei connections

- *Galilei connection:* connection $\boldsymbol{\omega}$ on G(M)
- $\nabla \tau = 0 = \nabla h$, or $(\omega^a_{\ h}, \omega^a)$ valued in $\mathfrak{gal} = \mathfrak{so}(3) \oplus \mathbb{R}^3$

Galilei manifolds Newton–Cartan gravity

Galilei connections

- *Galilei connection:* connection ω on G(M)
- $\nabla \tau = 0 = \nabla h$, or $(\omega^a_{\ b}, \varpi^a)$ valued in $\mathfrak{gal} = \mathfrak{so}(3) \oplus \mathbb{R}^3$
- Any Galilei connection has the form

$$\Gamma^{\rho}_{\mu\nu} = {}^{\nu}{}^{\rho}_{\mu\nu} + \frac{1}{2}T^{\rho}{}_{\mu\nu} - T_{(\mu\nu)}{}^{\rho} + \tau_{(\mu}\Omega_{\nu)}{}^{\rho}$$
(2)

Galilei connections

- Galilei connection: connection ω on G(M)
- $\nabla \tau = 0 = \nabla h$, or $(\omega^a{}_b, \varpi^a)$ valued in $\mathfrak{gal} = \mathfrak{so}(3) \oplus \mathbb{R}^3$
- Any Galilei connection has the form

$$\Gamma^{\rho}_{\mu\nu} = \Gamma^{\nu}_{\mu\nu} + \frac{1}{2} T^{\rho}_{\ \mu\nu} - T^{\ \rho}_{(\mu\nu)} + \tau_{(\mu} \Omega_{\nu)}^{\ \rho}$$
(2)

• \implies Determined by torsion $(T^t, T^a) = (d\tau, T^a)$ and Newton–Coriolis form

$$\Omega = \mathcal{O}_a \wedge \mathbf{e}^a \tag{3}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●目目 のへで

(arbitrary 2-form)

Galilei connections

- Galilei connection: connection ω on G(M)
- $\nabla \tau = 0 = \nabla h$, or $(\omega^a_{\ b}, \varpi^a)$ valued in $\mathfrak{gal} = \mathfrak{so}(3) \oplus \mathbb{R}^3$
- Any Galilei connection has the form

$$\Gamma^{\rho}_{\mu\nu} = {}^{\nu}{}^{\rho}_{\mu\nu} + \frac{1}{2}T^{\rho}{}_{\mu\nu} - T^{\rho}{}_{(\mu\nu)}{}^{\rho} + \tau_{(\mu}\Omega_{\nu)}{}^{\rho}$$
(2)

• \implies Determined by torsion $(T^t, T^a) = (d\tau, T^a)$ and Newton–Coriolis form

$$\Omega = \omega_a \wedge e^a \tag{3}$$

(arbitrary 2-form)

• Newtonian connection: T = 0 and $d\Omega = 0$

Newton–Cartan gravity

Axioms for Newton–Cartan gravity

- Spacetime is a Galilei manifold (M, τ, h) with absolute time, endowed with a Newtonian connection $\tilde{\omega}$,
- 2 ideal clocks measure time as defined by τ ,
- **9** free test particles move on timelike geodesics of $\tilde{\omega}$, i.e. timelike curves γ solving

$$\widetilde{\nabla}_{\dot{\gamma}}\dot{\gamma} = 0, \tag{4}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

the field equation

$$\widetilde{R}_{\mu\nu} = 4\pi G \,\rho \,\tau_{\mu} \tau_{\nu} \tag{5}$$

holds, where ρ is the mass density.

Newton–Cartan gravity

Axioms for Newton–Cartan gravity

- Spacetime is a Galilei manifold (M, τ, h) with absolute time, endowed with a Newtonian connection $\tilde{\omega}$,
- 2 ideal clocks measure time as defined by τ ,
- **9** free test particles move on timelike geodesics of $\tilde{\omega}$, i.e. timelike curves γ solving

$$\widetilde{\nabla}_{\dot{\gamma}}\dot{\gamma} = 0, \tag{4}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

the field equation

$$\widetilde{R}_{\mu\nu} = 4\pi G \,\rho \,\tau_{\mu} \tau_{\nu} \tag{5}$$

holds, where ρ is the mass density.

• Arises as formal $c \to \infty$ limit of GR

Newton–Cartan gravity

Axioms for Newton–Cartan gravity

- Spacetime is a Galilei manifold (M, τ, h) with absolute time, endowed with a Newtonian connection $\tilde{\omega}$,
- 2 ideal clocks measure time as defined by τ ,
- **9** free test particles move on timelike geodesics of $\tilde{\omega}$, i.e. timelike curves γ solving

$$\widetilde{\nabla}_{\dot{\gamma}}\dot{\gamma} = 0, \tag{4}$$

the field equation

$$\widetilde{R}_{\mu\nu} = 4\pi G \,\rho \,\tau_{\mu} \tau_{\nu} \tag{5}$$

holds, where ρ is the mass density.

- Arises as formal $c \to \infty$ limit of GR
- Coordinate formulation of Newtonian gravity can be recovered (up to possibility of non-absolute rotation)

argmann structures eleparallel Newton–Cartan gravity

Teleparallel Galilei connections

Recap of usual Newton–Cartan gravity

- Galilei manifolds
- Newton–Cartan gravity

2 Teleparallel Galilei connections

- Bargmann structures
- Teleparallel Newton–Cartan gravity

3 Relation to other theories

- Teleparallel NC from TEGR
- Recovering Newtonian gravity

PKS: Teleparallel Newton-Cartan gravity, in preparation

argmann structures eleparallel Newton–Cartan gravity

'Teleparallelisation' of NC gravity?

- 'Teleparallelisation' $GR \rightarrow TEGR$:
 - Lorentzian manifold (M, g): unique torsion-free metric connection $\dot{\tilde{\omega}}$
 - \implies General metric connection $\overset{\scriptscriptstyle \mathrm{L}}{\omega}$ determined by its torsion $\overset{\scriptscriptstyle \mathrm{L}}{T}$
 - \rightsquigarrow Riemannian curvature $\dot{\tilde{R}}$ expressible purely in terms of $\dot{\omega}, \dot{T}, \dot{R} = 0$
 - \rightsquigarrow Reformulation of GR in terms of $\overset{\mathrm{L}}{\omega}, \overset{\mathrm{L}}{T}$

argmann structures eleparallel Newton–Cartan gravity

'Teleparallelisation' of NC gravity?

- 'Teleparallelisation' $GR \rightarrow TEGR$:
 - Lorentzian manifold (M, g): unique torsion-free metric connection $\dot{\tilde{\omega}}$
 - \implies General metric connection $\overset{\scriptscriptstyle \mathrm{L}}{\omega}$ determined by its torsion $\overset{\scriptscriptstyle \mathrm{L}}{T}$
 - \rightsquigarrow Riemannian curvature $\overset{\flat}{\tilde{R}}$ expressible purely in terms of $\overset{\flat}{\omega}, \overset{\uparrow}{T}, \overset{\flat}{R} = 0$
 - \rightsquigarrow Reformulation of GR in terms of $\overset{\mathsf{L}}{\omega}, \overset{\mathsf{L}}{T}$
- Analogue for NC gravity?
 - Problem: Galilei connection ω not uniquely determined by T!

Bargmann structures Teleparallel Newton–Cartan gravity

Extending Galilei to Bargmann structures

- Bargmann group $Barg = Gal \ltimes (\mathbb{R}^4 \times U(1))$
- Extend Galilei frame bundle to Barg-bundle $B(M) = G(M) \times_{Gal} Barg$

'Globalised' construction from:

Bargmann structures Teleparallel Newton–Cartan gravity

Extending Galilei to Bargmann structures

- Bargmann group $Barg = Gal \ltimes (\mathbb{R}^4 \times U(1))$
- Extend Galilei frame bundle to Barg-bundle $B(M) = G(M) \times_{Gal} Barg$
- Connection on B(M) = Galilei connection ω + tensorial form $(\theta, ia) \in \Omega^1_{Gal}(G(M), \mathbb{R}^4 \oplus \mathfrak{u}(1))$

'Globalised' construction from:

Extending Galilei to Bargmann structures

- Bargmann group $Barg = Gal \ltimes (\mathbb{R}^4 \times U(1))$
- Extend Galilei frame bundle to Barg-bundle $B(M) = G(M) \times_{Gal} Barg$
- Connection on B(M) =Galilei connection ω + tensorial form $(\theta, ia) \in \Omega^1_{Gal}(G(M), \mathbb{R}^4 \oplus \mathfrak{u}(1))$
- Bargmann structure: Choice of a with θ corresponding to canonical solder form

'Globalised' construction from:

Extending Galilei to Bargmann structures

- Bargmann group $Barg = Gal \ltimes (\mathbb{R}^4 \times U(1))$
- Extend Galilei frame bundle to Barg-bundle $B(M) = G(M) \times_{Gal} Barg$
- Connection on B(M) =Galilei connection ω + tensorial form $(\theta, ia) \in \Omega^1_{Gal}(G(M), \mathbb{R}^4 \oplus \mathfrak{u}(1))$
- Bargmann structure: Choice of a with θ corresponding to canonical solder form
- Pulled back to *M*: extended coframe $(e^t = \tau, e^a, ia)$
- Transformation under local boost of frame $v \rightarrow v k^a e_a$:

$$a \to a + k_a \mathrm{e}^a + \frac{1}{2} |k|^2 \tau \tag{6}$$

'Globalised' construction from:

Bargmann structures Teleparallel Newton–Cartan gravity

Extended torsion

• Exterior covariant derivative of (τ, e^a, ia) : extended torsion

$$\mathbf{d}^{\boldsymbol{\omega}}(\tau, \mathbf{e}^{a}, \mathbf{i}a) = (T^{t}, T^{a}, \mathbf{i}^{\boldsymbol{f}})$$
(7)

• Mass torsion
$$f = da + \omega_a \wedge e^a = da + \Omega$$

Extended torsion

• Exterior covariant derivative of (τ, e^a, ia) : extended torsion

$$\mathbf{d}^{\boldsymbol{\omega}}(\tau, \mathbf{e}^{a}, \mathbf{i}a) = (T^{t}, T^{a}, \mathbf{i}_{f})$$
(7)

- Mass torsion $f = da + \omega_a \wedge e^a = da + \Omega$
- For $0 = d\tau = T^t$: unique Galilei connection $\tilde{\omega}$ with vanishing extended torsion!

Extended torsion

• Exterior covariant derivative of (τ, e^a, ia) : extended torsion

$$\mathbf{d}^{\boldsymbol{\omega}}(\tau, \mathbf{e}^{a}, \mathbf{i}a) = (T^{t}, T^{a}, \mathbf{i}\boldsymbol{f})$$
(7)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●目目 のへで

- Mass torsion $f = da + \omega_a \wedge e^a = da + \Omega$
- For $0 = d\tau = T^t$: unique Galilei connection $\tilde{\omega}$ with vanishing extended torsion!
- For general ω : Newton–Cartan contortion

$$\Gamma^{\rho}_{\mu\nu} - \tilde{\Gamma}^{\rho}_{\mu\nu} = \frac{1}{2} T^{\rho}_{\ \mu\nu} - T_{(\mu\nu)}^{\ \rho} + \tau_{(\mu} f_{\nu)}^{\ \rho} =: K^{\rho}_{\ \mu\nu}$$
(8)

Bargmann structures Teleparallel Newton–Cartan gravity

Teleparallel Newton–Cartan gravity

Axioms for teleparallel Newton-Cartan gravity

- Spacetime is a Galilei manifold (M, τ, h) with absolute time, endowed with a Bargmann structure and a flat Galilei connection ω ,
- 2 ideal clocks measure time as defined by τ ,
- free test particles move on timelike curves γ solving

$$(\nabla_{\dot{\gamma}}\dot{\gamma})^{\rho} = K^{\rho}_{\ \mu\nu}\dot{\gamma}^{\mu}\dot{\gamma}^{\nu},\tag{9}$$

the field equation

$$-D_{\sigma}K^{\sigma}_{\ AB} + D_{A}K^{\mu}_{\ \mu B} - K^{\mu}_{\ \sigma B}T^{\sigma}_{\ \mu A} + K^{\mu}_{\ \mu\sigma}K^{\sigma}_{\ AB} - K^{\mu}_{\ A\sigma}K^{\sigma}_{\ \mu B} = 4\pi G\,\rho\,\tau_{A}\,\tau_{B}$$
(10)

holds, where ρ is the mass density.

Bargmann structures Teleparallel Newton–Cartan gravity

Teleparallel Newton–Cartan gravity

Axioms for teleparallel Newton-Cartan gravity

- Spacetime is a Galilei manifold (M, τ, h) with absolute time, endowed with a Bargmann structure and a flat Galilei connection ω ,
- 2 ideal clocks measure time as defined by τ ,
- free test particles move on timelike curves γ solving

$$(\nabla_{\dot{\gamma}}\dot{\gamma})^{\rho} = K^{\rho}_{\ \mu\nu}\dot{\gamma}^{\mu}\dot{\gamma}^{\nu},\tag{9}$$

the field equation

$$-D_{\sigma}K^{\sigma}_{\ AB} + D_{A}K^{\mu}_{\ \mu B} - K^{\mu}_{\ \sigma B}T^{\sigma}_{\ \mu A} + K^{\mu}_{\ \mu\sigma}K^{\sigma}_{\ AB} - K^{\mu}_{\ A\sigma}K^{\sigma}_{\ \mu B} = 4\pi G\,\rho\,\tau_{A}\,\tau_{B}$$
(10)

holds, where ρ is the mass density.

• LHS of (10) is $\widetilde{R}_{AB} \rightsquigarrow$ equivalent to usual NC gravity

eleparallel NC from TEGR ecovering Newtonian gravity

Relation to other theories

Recap of usual Newton–Cartan gravity

- Galilei manifolds
- Newton–Cartan gravity

2 Teleparallel Galilei connections

- Bargmann structures
- Teleparallel Newton–Cartan gravity

3 Relation to other theories

- Teleparallel NC from TEGR
- Recovering Newtonian gravity

PKS: Teleparallel Newton-Cartan gravity, in preparation

Teleparallel NC from TEGR Recovering Newtonian gravity

Teleparallel NC from TEGR

• Expand Lorentzian objects in c^{-1}

・ロト・4日・4日・4日・3日 うへで

Teleparallel NC from TEGR Recovering Newtonian gravity

Teleparallel NC from TEGR

- Expand Lorentzian objects in c^{-1}
- Lorentzian tetrad (assume $d\tau = 0$):

$$E^{\mu}_{\mu} = c\tau_{\mu} + c^{-1}a_{\mu} + O(c^{-3}), \qquad E^{a}_{\mu} = e^{a}_{\mu} + O(c^{-2}), \qquad (11a)$$
$$E^{\mu}_{0} = c^{-1}v^{\mu} + O(c^{-3}), \qquad E^{\mu}_{a} = e^{\mu}_{a} + O(c^{-2}) \qquad (11b)$$

Teleparallel NC from TEGR Recovering Newtonian gravity

Teleparallel NC from TEGR

- Expand Lorentzian objects in c^{-1}
- Lorentzian tetrad (assume $d\tau = 0$):

$$E^0_\mu = c\tau_\mu + c^{-1}a_\mu + O(c^{-3}),$$
 $E^a_\mu = e^a_\mu + O(c^{-2}),$ (11a)

$$E_0^{\mu} = c^{-1}v^{\mu} + O(c^{-3}),$$
 $E_a^{\mu} = e_a^{\mu} + O(c^{-2})$ (11b)

• Lorentzian local connection form:

$$\omega_{0}^{b} = 0, \quad \omega_{0}^{a} = c^{-1} \omega^{a} + O(c^{-3}),$$
(12a)

$$\omega^{La}_{\ b} = \omega^{a}_{\ b} + \mathcal{O}(c^{-2}) \tag{12b}$$

Teleparallel NC from TEGR Recovering Newtonian gravity

Teleparallel NC from TEGR

- Expand Lorentzian objects in c^{-1}
- Lorentzian tetrad (assume $d\tau = 0$):

$$E^{0}_{\mu} = c\tau_{\mu} + c^{-1}a_{\mu} + O(c^{-3}), \qquad \qquad E^{a}_{\mu} = e^{a}_{\mu} + O(c^{-2}), \qquad (11a)$$

$$E_0^{\mu} = c^{-1}v^{\mu} + O(c^{-3}),$$
 $E_a^{\mu} = e_a^{\mu} + O(c^{-2})$ (11b)

• Lorentzian local connection form:

$$\omega_{0}^{b} = 0, \quad \omega_{0}^{a} = c^{-1} \omega^{a} + O(c^{-3}),$$
(12a)

$$\overset{\mathsf{L}}{\omega}^{a}{}_{b} = \omega^{a}{}_{b} + \mathcal{O}(c^{-2}) \tag{12b}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●目目 のへで

• ~> Galilei manifold and Bargmann structure!

Teleparallel NC from TEGR Recovering Newtonian gravity

Teleparallel NC from TEGR

- Expand Lorentzian objects in c^{-1}
- Lorentzian tetrad (assume $d\tau = 0$):

$$E^{0}_{\mu} = c\tau_{\mu} + c^{-1}a_{\mu} + O(c^{-3}), \qquad \qquad E^{a}_{\mu} = e^{a}_{\mu} + O(c^{-2}), \qquad (11a)$$

$$E_0^{\mu} = c^{-1}v^{\mu} + O(c^{-3}),$$
 $E_a^{\mu} = e_a^{\mu} + O(c^{-2})$ (11b)

• Lorentzian local connection form:

$$\omega_{0}^{b} = 0, \quad \omega_{0}^{a} = c^{-1} \omega^{a} + O(c^{-3}),$$
(12a)

$$\overset{\mathsf{L}}{\omega}^{a}{}_{b} = \omega^{a}{}_{b} + \mathcal{O}(c^{-2}) \tag{12b}$$

- ~> Galilei manifold and Bargmann structure!
- Lorentzian torsion expands to Galilean extended torsion: $(\overset{\perp}{T}^{0}, \overset{\perp}{T}^{a}) = (cT^{t} + c^{-1}f + O(c^{-3}), T^{a} + O(c^{-2}))$

Teleparallel NC from TEGR Recovering Newtonian gravity

Teleparallel NC from TEGR

- Expand Lorentzian objects in c^{-1}
- Lorentzian tetrad (assume $d\tau = 0$):

$$E^{0}_{\mu} = c\tau_{\mu} + c^{-1}a_{\mu} + O(c^{-3}), \qquad \qquad E^{a}_{\mu} = e^{a}_{\mu} + O(c^{-2}), \qquad (11a)$$

$$E_0^{\mu} = c^{-1}v^{\mu} + O(c^{-3}),$$
 $E_a^{\mu} = e_a^{\mu} + O(c^{-2})$ (11b)

• Lorentzian local connection form:

$$\overset{L}{\omega}{}^{0}_{0} = 0, \quad \overset{L}{\omega}{}^{a}_{0} = c^{-1} \mathscr{O}^{a} + \mathcal{O}(c^{-3}),$$
(12a)

$$\overset{\mathsf{L}}{\omega}{}^{a}{}_{b} = \omega{}^{a}{}_{b} + \mathcal{O}(c^{-2}) \tag{12b}$$

- ~> Galilei manifold and Bargmann structure!
- Lorentzian torsion expands to Galilean extended torsion: $(\overset{\perp}{T}^{0}, \overset{\perp}{T}^{a}) = (cT^{t} + c^{-1}f + O(c^{-3}), T^{a} + O(c^{-2}))$
- Field equation of TEGR \rightsquigarrow trace-reverse $\stackrel{c \to \infty}{\longrightarrow}$ teleparallel NC field eq.!

Teleparallel NC from TEGR Recovering Newtonian gravity

Recovering Newtonian gravity

• 'Gauge fix' to
$$T^a_{\ bc} = 0$$
 • Details

(日)

Teleparallel NC from TEGR Recovering Newtonian gravity

Recovering Newtonian gravity

- 'Gauge fix' to $T^a_{\ bc} = 0$ **Details**
- Work in rigid, non-rotating frame (~~ 'absolute rotation') Details

Teleparallel NC from TEGR Recovering Newtonian gravity

Recovering Newtonian gravity

- 'Gauge fix' to $T^a_{bc} = 0$ **Details**
- Work in rigid, non-rotating frame (~> 'absolute rotation') Details

•
$$\implies$$
 $\mathrm{d}a = \mathrm{d}\phi \wedge \tau$

Teleparallel NC from TEGR Recovering Newtonian gravity

Recovering Newtonian gravity

- 'Gauge fix' to $T^a_{\ bc} = 0$ **Details**
- Work in rigid, non-rotating frame (~> 'absolute rotation') Details
- \implies $da = d\phi \wedge \tau$
- Field equation turns into

$$D_a D^a \phi = 4\pi G \rho \tag{13}$$

Teleparallel NC from TEGR Recovering Newtonian gravity

Recovering Newtonian gravity

- 'Gauge fix' to $T^a_{bc} = 0$ **Details**
- Work in rigid, non-rotating frame (~~ 'absolute rotation') Details
- \implies $da = d\phi \wedge \tau$
- Field equation turns into

$$D_a D^a \phi = 4\pi G \rho \tag{13}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●目目 のへで

• For $[e_a, v] = 0$: equation of motion becomes

$$\ddot{\gamma}^a + \omega_c^{\ a}{}_b \dot{\gamma}^c \dot{\gamma}^b = -\partial^a \phi \tag{14}$$

Conclusion

Summary

- Bargmann structure formalism for NC geometry ~→ natural notion of teleparallel Galilei connections
- Teleparallel formulation of NC gravity
- Arises from TEGR for $c \rightarrow \infty$, reproduces Newtonian gravity

Conclusion

Summary

- Bargmann structure formalism for NC geometry \rightsquigarrow natural notion of teleparallel Galilei connections
- Teleparallel formulation of NC gravity
- Arises from TEGR for $c \rightarrow \infty$, reproduces Newtonian gravity

Outlook

- TNC generalisation (d $\tau \neq 0$)? \rightsquigarrow probably needs different symmetry algebra ('TNC type II')
- Action formulation?
- Modified teleparallel gravity?
- Theories with more general geometry?
- 'Covariant' post-Newtonian limit of (modified) teleparallel gravity?

Conclusion

Summary

- Bargmann structure formalism for NC geometry \rightsquigarrow natural notion of teleparallel Galilei connections
- Teleparallel formulation of NC gravity
- Arises from TEGR for $c \rightarrow \infty$, reproduces Newtonian gravity

Outlook

- TNC generalisation (d $\tau \neq$ 0)? \rightsquigarrow probably needs different symmetry algebra ('TNC type II')
- Action formulation?
- Modified teleparallel gravity?
- Theories with more general geometry?
- 'Covariant' post-Newtonian limit of (modified) teleparallel gravity?

Many thanks for your attention!

Appendix: details

Details on recovery of Newtonian gravity

・ロト・4日・4日・4日・3日 うへで

Gauge fixing the purely spatial torsion

- Purely spatial part of field equation: $\tilde{R}_{ab} = 0 \stackrel{3D}{\Longrightarrow}$ spatial metric flat
- \implies We may assume

$$T^a_{\ bc} = 0 \tag{15}$$

consistently with flatness

◀ Back

Trautman's 'absolute rotation' condition

- Usual NC: To recover Newtonian gravity, assume $\widetilde{R}^{ab}_{\mu\nu} = 0$
- $\iff \exists$ rigid, non-rotating frames
- Such frames in teleparallel NC:

$$\begin{split} \varpi_{(ab)} &= T_{(ab)t} \eqno(16a) \\ \varpi_{[ab]} &= \frac{1}{2} f_{ab} \end{split} \tag{16a}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●目目 のへで

◀ Back