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Recap of usual Newton–Cartan gravity
Teleparallel Galilei connections

Relation to other theories

Motivation

‘Non-relativistic’ limit: GR→ Newtonian gravity
Textbook formulation: linearised gravity
Coordinate dependent

Geometric formulation: GR
c→∞−→ Newton–Cartan gravity

Galilei-relativistic spacetime geometry
Newtonian gravity described by curved connection

Geometric description of the c→ ∞ limit of teleparallel gravity?

Here: consider just TEGR

Read, Teh (2018): special case of our formalism; null-reduction instead of c→ ∞

J Read, NJ Teh: The teleparallel equivalent of Newton–Cartan gravity, arXiv:1807.11779,
Class. Quantum Gravity 35, 18LT01 (2018)
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1 Recap of usual Newton–Cartan gravity
Galilei manifolds
Newton–Cartan gravity

2 Teleparallel Galilei connections
Bargmann structures
Teleparallel Newton–Cartan gravity

3 Relation to other theories
Teleparallel NC from TEGR

Recovering Newtonian gravity

PKS: Teleparallel Newton–Cartan gravity, in preparation
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Galilei manifolds
Newton–Cartan gravity

Galilei manifolds

Galilei manifold: M, τµ 6= 0, hµν of signature (0+++), τµhµν = 0

ker τ = {spacelike vectors}, others: timelike∫
γ τ = elapsed time along γ, h defines metric on ker τ

This talk: mostly assume dτ = 0 (absolute time)
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Galilei manifolds
Newton–Cartan gravity

Galilei frames

Homogeneous Galilei group:
Gal = O(3)n R3 (1)

Galilei frame for (M, τ, h): local frame (eA) = (et = v, ea) s.t. τ(v) = 1, hµν = δabeµ
a eν

b

 Galilei frame bundle G(M)
π→ M, principal Gal-bundle
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Galilei manifolds
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Galilei connections

Galilei connection: connection ω on G(M)

∇τ = 0 = ∇h, or (ωa
b , va) valued in gal = so(3) i R3

Any Galilei connection has the form

Γρ
µν =

v
Γρ

µν +
1
2 Tρ

µν − T ρ

(µν)
+ τ(µ Ω ρ

ν) (2)

=⇒ Determined by torsion (Tt, Ta) = (dτ, Ta) and Newton–Coriolis form

Ω = va ∧ ea (3)

(arbitrary 2-form)

Newtonian connection: T = 0 and dΩ = 0
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Newton–Cartan gravity

Axioms for Newton–Cartan gravity
1 Spacetime is a Galilei manifold (M, τ, h) with absolute time, endowed with a Newtonian

connection ω̃,
2 ideal clocks measure time as defined by τ,
3 free test particles move on timelike geodesics of ω̃, i.e. timelike curves γ solving

∇̃γ̇γ̇ = 0, (4)

4 the field equation
R̃µν = 4πG ρ τµτν (5)

holds, where ρ is the mass density.

Arises as formal c→ ∞ limit of GR

Coordinate formulation of Newtonian gravity can be recovered (up to possibility of
non-absolute rotation)
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Bargmann structures
Teleparallel Newton–Cartan gravity

‘Teleparallelisation’ of NC gravity?

‘Teleparallelisation’ GR→ TEGR:

Lorentzian manifold (M, g): unique torsion-free metric connection
L

ω̃

=⇒ General metric connection L
ω determined by its torsion

L
T

 Riemannian curvature
L

R̃ expressible purely in terms of L
ω,

L
T,

L
R = 0

 Reformulation of GR in terms of L
ω,

L
T

Analogue for NC gravity?

Problem: Galilei connection ω not uniquely determined by T!
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Extending Galilei to Bargmann structures

Bargmann group Barg = Galn (R4 ×U(1))

Extend Galilei frame bundle to Barg-bundle B(M) = G(M)×Gal Barg

Connection on B(M) = Galilei connection ω + tensorial form
(θ, ia) ∈ Ω1

Gal(G(M), R4 ⊕ u(1))

Bargmann structure: Choice of a with θ corresponding to canonical solder form

Pulled back to M: extended coframe (et = τ, ea, ia)

Transformation under local boost of frame v→ v− kaea:

a→ a + kaea +
1
2
|k|2τ (6)

‘Globalised’ construction from:
M Geracie, K Prabhu, MM Roberts: Curved non-relativistic spacetimes, Newtonian gravitation and massive matter,

arXiv:1503.02682, J. Math. Phys. 56, 103505 (2015)
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Bargmann structures
Teleparallel Newton–Cartan gravity

Extended torsion

Exterior covariant derivative of (τ, ea, ia): extended torsion

dω(τ, ea, ia) = (Tt, Ta, i f ) (7)

Mass torsion f = da + va ∧ ea = da + Ω

For 0 = dτ = Tt: unique Galilei connection ω̃ with vanishing extended torsion!

For general ω: Newton–Cartan contortion

Γρ
µν − Γ̃ρ

µν = 1
2 Tρ

µν − T ρ

(µν)
+ τ(µ f ρ

ν) =: Kρ
µν (8)
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Teleparallel Newton–Cartan gravity

Axioms for teleparallel Newton–Cartan gravity
1 Spacetime is a Galilei manifold (M, τ, h) with absolute time, endowed with a Bargmann

structure and a flat Galilei connection ω,
2 ideal clocks measure time as defined by τ,
3 free test particles move on timelike curves γ solving

(∇γ̇γ̇)ρ = Kρ
µν γ̇µγ̇ν, (9)

4 the field equation

− DσKσ
AB + DAKµ

µB − Kµ
σBTσ

µA + Kµ
µσKσ

AB − Kµ
AσKσ

µB = 4πG ρ τA τB (10)

holds, where ρ is the mass density.

LHS of (10) is R̃AB  equivalent to usual NC gravity
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Teleparallel NC from TEGR

Recovering Newtonian gravity

Teleparallel NC from TEGR

Expand Lorentzian objects in c−1

Lorentzian tetrad (assume dτ = 0):

E0
µ = cτµ + c−1aµ + O(c−3), Ea

µ = ea
µ + O(c−2), (11a)

Eµ
0 = c−1vµ + O(c−3), Eµ

a = eµ
a + O(c−2) (11b)

Lorentzian local connection form:
L

ω0
0 = 0, L

ωa
0 = c−1va + O(c−3), (12a)

L
ωa

b = ωa
b + O(c−2) (12b)

 Galilei manifold and Bargmann structure!

Lorentzian torsion expands to Galilean extended torsion:

(
L
T0,

L
Ta) = (cTt + c−1 f + O(c−3), Ta + O(c−2))

Field equation of TEGR trace-reverse c→∞−→ teleparallel NC field eq.!
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Recap of usual Newton–Cartan gravity
Teleparallel Galilei connections

Relation to other theories

Teleparallel NC from TEGR

Recovering Newtonian gravity

Recovering Newtonian gravity

‘Gauge fix’ to Ta
bc = 0 Details

Work in rigid, non-rotating frame ( ‘absolute rotation’) Details

=⇒ da = dφ ∧ τ

Field equation turns into
Da Daφ = 4πGρ (13)

For [ea, v] = 0: equation of motion becomes

γ̈a + ω a
c b γ̇c γ̇b = −∂aφ (14)
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Recap of usual Newton–Cartan gravity
Teleparallel Galilei connections

Relation to other theories

Conclusion

Summary

Bargmann structure formalism for NC geometry natural notion of teleparallel Galilei
connections

Teleparallel formulation of NC gravity

Arises from TEGR for c→ ∞, reproduces Newtonian gravity

Outlook

TNC generalisation (dτ 6= 0)?  probably needs different symmetry algebra (‘TNC type II’)

Action formulation?

Modified teleparallel gravity?

Theories with more general geometry?

‘Covariant’ post-Newtonian limit of (modified) teleparallel gravity?

Many thanks for your attention!
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Details on recovery of Newtonian gravity

Appendix: details

4 Details on recovery of Newtonian gravity
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Details on recovery of Newtonian gravity

Gauge fixing the purely spatial torsion

Purely spatial part of field equation: R̃ab = 0 3D
=⇒ spatial metric flat

=⇒ We may assume
Ta

bc = 0 (15)

consistently with flatness
Back
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Details on recovery of Newtonian gravity

Trautman’s ‘absolute rotation’ condition

Usual NC: To recover Newtonian gravity, assume R̃ab
µν = 0

⇐⇒ ∃ rigid, non-rotating frames

Such frames in teleparallel NC:

v(ab) = T(ab)t (16a)

v[ab] =
1
2 fab (16b)

Back
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