Teleparallel Newton-Cartan gravity

Philip K. Schwartz

Institut für Theoretische Physik
Leibniz Universität Hannover

1	1	Leibniz
10	2	Universität
100	4	Hannover

Metric-Affine Frameworks for Gravity 2022, $28^{\text {th }}$ June 2022

Motivation

- 'Non-relativistic' limit: GR \rightarrow Newtonian gravity
- Textbook formulation: linearised gravity
- Coordinate dependent

Motivation

- 'Non-relativistic' limit: GR \rightarrow Newtonian gravity
- Textbook formulation: linearised gravity
- Coordinate dependent
- Geometric formulation: GR $\xrightarrow{c \rightarrow \infty}$ Newton-Cartan gravity
- Galilei-relativistic spacetime geometry
- Newtonian gravity described by curved connection

Motivation

- 'Non-relativistic' limit: GR \rightarrow Newtonian gravity
- Textbook formulation: linearised gravity
- Coordinate dependent
- Geometric formulation: GR $\xrightarrow{c \rightarrow \infty}$ Newton-Cartan gravity
- Galilei-relativistic spacetime geometry
- Newtonian gravity described by curved connection
- Geometric description of the $c \rightarrow \infty$ limit of teleparallel gravity?
- Here: consider just TEGR
- Read, Teh (2018): special case of our formalism; null-reduction instead of $c \rightarrow \infty$

J Read, NJ Teh: The teleparallel equivalent of Newton-Cartan gravity, arXiv:1807.11779, Class. Quantum Gravity 35, 18LT01 (2018)

Outline

(1) Recap of usual Newton-Cartan gravity

- Galilei manifolds
- Newton-Cartan gravity
(2) Teleparallel Galilei connections
- Bargmann structures
- Teleparallel Newton-Cartan gravity

3 Relation to other theories

- Teleparallel NC from TEGR
- Recovering Newtonian gravity

Recap of usual Newton-Cartan gravity

(1) Recap of usual Newton-Cartan gravity

- Galilei manifolds
- Newton-Cartan gravity
(2) Teleparallel Galilei connections
- Bargmann structures
- Teleparallel Newton-Cartan gravity

3 Relation to other theories

- Teleparallel NC from TEGR
- Recovering Newtonian gravity

PKS: Teleparallel Newton-Cartan gravity, in preparation

Galilei manifolds

- Galilei manifold: $M, \tau_{\mu} \neq 0, h^{\mu \nu}$ of signature $(0+++), \tau_{\mu} h^{\mu \nu}=0$

Galilei manifolds

- Galilei manifold: $M, \tau_{\mu} \neq 0, h^{\mu v}$ of signature $(0+++), \tau_{\mu} h^{\mu v}=0$
- $\operatorname{ker} \tau=$ \{spacelike vectors\}, others: timelike
- $\int_{\gamma} \tau=$ elapsed time along γ, h defines metric on $\operatorname{ker} \tau$

Galilei manifolds

- Galilei manifold: $M, \tau_{\mu} \neq 0, h^{\mu v}$ of signature $(0+++), \tau_{\mu} h^{\mu v}=0$
- $\operatorname{ker} \tau=$ \{spacelike vectors\}, others: timelike
- $\int_{\gamma} \tau=$ elapsed time along γ, h defines metric on $\operatorname{ker} \tau$
- This talk: mostly assume $\mathrm{d} \tau=0$ (absolute time)

Galilei frames

- Homogeneous Galilei group:

$$
\begin{equation*}
\mathrm{Gal}=\mathrm{O}(3) \ltimes \mathbb{R}^{3} \tag{1}
\end{equation*}
$$

Galilei frames

- Homogeneous Galilei group:

$$
\begin{equation*}
\mathrm{Gal}=\mathrm{O}(3) \ltimes \mathbb{R}^{3} \tag{1}
\end{equation*}
$$

- Galilei frame for (M, τ, h) : local frame $\left(\mathrm{e}_{A}\right)=\left(\mathrm{e}_{t}=v, \mathrm{e}_{a}\right)$ s.t. $\tau(v)=1$, $h^{\mu v}=\delta^{a b} \mathrm{e}_{a}^{\mu} \mathrm{e}_{b}^{v}$

Galilei frames

- Homogeneous Galilei group:

$$
\begin{equation*}
\mathrm{Gal}=\mathrm{O}(3) \ltimes \mathbb{R}^{3} \tag{1}
\end{equation*}
$$

- Galilei frame for (M, τ, h) : local frame $\left(\mathrm{e}_{A}\right)=\left(\mathrm{e}_{t}=v, \mathrm{e}_{a}\right)$ s.t. $\tau(v)=1$, $h^{\mu v}=\delta^{a b} \mathrm{e}_{a}^{\mu} \mathrm{e}_{b}^{v}$
- \rightsquigarrow Galilei frame bundle $G(M) \xrightarrow{\pi} M$, principal Gal-bundle

Galilei connections

- Galilei connection: connection ω on $G(M)$
- $\nabla \tau=0=\nabla h$, or $\left(\omega^{a}{ }_{b}, \omega^{a}\right)$ valued in $\mathfrak{g a l}=\mathfrak{s o}(3) \oplus \mathbb{R}^{3}$

Galilei connections

- Galilei connection: connection ω on $G(M)$
- $\nabla \tau=0=\nabla h$, or $\left(\omega^{a}{ }_{b}, \omega^{a}\right)$ valued in $\mathfrak{g a l}=\mathfrak{s o}(3) \oplus \mathbb{R}^{3}$
- Any Galilei connection has the form

$$
\begin{equation*}
\Gamma_{\mu \nu}^{\rho}=\stackrel{v}{\Gamma}_{\mu \nu}^{\rho}+\frac{1}{2} T^{\rho}{ }_{\mu \nu}-T_{(\mu \nu)}{ }^{\rho}+\tau_{(\mu} \Omega_{v)}{ }^{\rho} \tag{2}
\end{equation*}
$$

Galilei connections

- Galilei connection: connection ω on $G(M)$
- $\nabla \tau=0=\nabla h$, or $\left(\omega^{a}{ }_{b}, \omega^{a}\right)$ valued in $\mathfrak{g a l}=\mathfrak{s o}(3) \oplus \mathbb{R}^{3}$
- Any Galilei connection has the form

$$
\begin{equation*}
\Gamma_{\mu \nu}^{\rho}=\stackrel{v}{\Gamma}_{\mu \nu}^{\rho}+\frac{1}{2} T^{\rho}{ }_{\mu \nu}-T_{(\mu \nu)}{ }^{\rho}+\tau_{(\mu} \Omega_{v)}{ }^{\rho} \tag{2}
\end{equation*}
$$

- \Longrightarrow Determined by torsion $\left(T^{t}, T^{a}\right)=\left(\mathrm{d} \tau, T^{a}\right)$ and Newton-Coriolis form

$$
\begin{equation*}
\Omega=\omega_{a} \wedge \mathrm{e}^{a} \tag{3}
\end{equation*}
$$

(arbitrary 2-form)

Galilei connections

- Galilei connection: connection ω on $G(M)$
- $\nabla \tau=0=\nabla h$, or $\left(\omega^{a}{ }_{b}, \omega^{a}\right)$ valued in $\mathfrak{g a l}=\mathfrak{s o}(3) \oplus \mathbb{R}^{3}$
- Any Galilei connection has the form

$$
\begin{equation*}
\Gamma_{\mu v}^{\rho}=\stackrel{v}{\Gamma}_{\mu \nu}^{\rho}+\frac{1}{2} T^{\rho}{ }_{\mu v}-T_{(\mu \nu)}{ }^{\rho}+\tau_{(\mu} \Omega_{v)}{ }^{\rho} \tag{2}
\end{equation*}
$$

- \Longrightarrow Determined by torsion $\left(T^{t}, T^{a}\right)=\left(\mathrm{d} \tau, T^{a}\right)$ and Newton-Coriolis form

$$
\begin{equation*}
\Omega=\omega_{a} \wedge \mathrm{e}^{a} \tag{3}
\end{equation*}
$$

(arbitrary 2-form)

- Newtonian connection: $T=0$ and $\mathrm{d} \Omega=0$

Newton-Cartan gravity

Axioms for Newton-Cartan gravity

- Spacetime is a Galilei manifold (M, τ, h) with absolute time, endowed with a Newtonian connection $\widetilde{\omega}$,
(2) ideal clocks measure time as defined by τ,
(3) free test particles move on timelike geodesics of $\widetilde{\omega}$, i.e. timelike curves γ solving

$$
\begin{equation*}
\widetilde{\nabla}_{\dot{\gamma}} \dot{\gamma}=0, \tag{4}
\end{equation*}
$$

(- the field equation

$$
\begin{equation*}
\widetilde{R}_{\mu \nu}=4 \pi G \rho \tau_{\mu} \tau_{v} \tag{5}
\end{equation*}
$$

holds, where ρ is the mass density.

Newton-Cartan gravity

Axioms for Newton-Cartan gravity

- Spacetime is a Galilei manifold (M, τ, h) with absolute time, endowed with a Newtonian connection $\widetilde{\omega}$,
(2) ideal clocks measure time as defined by τ,
(3) free test particles move on timelike geodesics of $\widetilde{\omega}$, i.e. timelike curves γ solving

$$
\begin{equation*}
\widetilde{\nabla}_{\dot{\gamma}} \dot{\gamma}=0, \tag{4}
\end{equation*}
$$

(T) the field equation

$$
\begin{equation*}
\widetilde{R}_{\mu \nu}=4 \pi G \rho \tau_{\mu} \tau_{v} \tag{5}
\end{equation*}
$$

holds, where ρ is the mass density.

- Arises as formal $c \rightarrow \infty$ limit of GR

Newton-Cartan gravity

Axioms for Newton-Cartan gravity

- Spacetime is a Galilei manifold (M, τ, h) with absolute time, endowed with a Newtonian connection $\widetilde{\omega}$,
(2) ideal clocks measure time as defined by τ,
(3) free test particles move on timelike geodesics of $\widetilde{\boldsymbol{\omega}}$, i.e. timelike curves γ solving

$$
\begin{equation*}
\widetilde{\nabla}_{\dot{\gamma}} \dot{\gamma}=0, \tag{4}
\end{equation*}
$$

(T) the field equation

$$
\begin{equation*}
\widetilde{R}_{\mu \nu}=4 \pi G \rho \tau_{\mu} \tau_{\nu} \tag{5}
\end{equation*}
$$

holds, where ρ is the mass density.

- Arises as formal $c \rightarrow \infty$ limit of GR
- Coordinate formulation of Newtonian gravity can be recovered (up to possibility of non-absolute rotation)

Teleparallel Galilei connections

(1) Recap of usual Newton-Cartan gravity

- Galilei manifolds
- Newton-Cartan gravity
(2) Teleparallel Galilei connections
- Bargmann structures
- Teleparallel Newton-Cartan gravity
(3) Relation to other theories
- Teleparallel NC from TEGR
- Recovering Newtonian gravity

PKS: Teleparallel Newton-Cartan gravity, in preparation

'Teleparallelisation' of NC gravity?

- 'Teleparallelisation' GR \rightarrow TEGR:
- Lorentzian manifold (M, g) : unique torsion-free metric connection $\stackrel{\llcorner }{\boldsymbol{\omega}}$
- \Longrightarrow General metric connection $\stackrel{L}{\omega}$ determined by its torsion $\stackrel{\llcorner }{T}$
- \rightsquigarrow Riemannian curvature $\stackrel{\llcorner }{\tilde{R}}$ expressible purely in terms of $\stackrel{\llcorner }{\omega}, \stackrel{\llcorner }{T}, \stackrel{\llcorner }{R}=0$
- \rightsquigarrow Reformulation of GR in terms of $\stackrel{L}{\omega}, \stackrel{L}{T}$

'Teleparallelisation' of NC gravity?

- 'Teleparallelisation' GR \rightarrow TEGR:
- Lorentzian manifold (M, g) : unique torsion-free metric connection $\underset{\boldsymbol{\omega}}{\stackrel{L}{\boldsymbol{\omega}}}$
- \Longrightarrow General metric connection $\stackrel{\dot{\omega}}{ }$ determined by its torsion $\stackrel{\llcorner }{T}$
- \rightsquigarrow Riemannian curvature $\stackrel{L}{R}$ expressible purely in terms of $\stackrel{\iota}{\boldsymbol{\omega}}, \stackrel{\grave{T}}{T}, \frac{1}{R}=0$
- \rightsquigarrow Reformulation of GR in terms of $\stackrel{\llcorner }{\omega}, \stackrel{\llcorner }{T}$
- Analogue for NC gravity?
- Problem: Galilei connection ω not uniquely determined by T !

Extending Galilei to Bargmann structures

- Bargmann group Barg $=\mathrm{Gal} \ltimes\left(\mathbb{R}^{4} \times \mathrm{U}(1)\right)$
- Extend Galilei frame bundle to Barg-bundle $B(M)=G(M) \times{ }_{\text {Gal }}$ Barg

Extending Galilei to Bargmann structures

- Bargmann group Barg $=\mathrm{Gal} \ltimes\left(\mathbb{R}^{4} \times \mathrm{U}(1)\right)$
- Extend Galilei frame bundle to Barg-bundle $B(M)=G(M) \times{ }_{\text {Gal }}$ Barg
- Connection on $B(M)=$ Galilei connection $\boldsymbol{\omega}+$ tensorial form $(\boldsymbol{\theta}, \mathrm{i} \boldsymbol{a}) \in \Omega_{\mathrm{Gal}}^{1}\left(G(M), \mathbb{R}^{4} \oplus \mathfrak{u}(1)\right)$
'Globalised' construction from:
M Geracie, K Prabhu, MM Roberts: Curved non-relativistic spacetimes, Newtonian gravitation and massive matter, arXiv:1503.02682, J. Math. Phys. 56, 103505 (2015)

Extending Galilei to Bargmann structures

- Bargmann group Barg $=\mathrm{Gal} \ltimes\left(\mathbb{R}^{4} \times \mathrm{U}(1)\right)$
- Extend Galilei frame bundle to Barg-bundle $B(M)=G(M) \times{ }_{\text {Gal }}$ Barg
- Connection on $B(M)=$ Galilei connection $\boldsymbol{\omega}+$ tensorial form $(\boldsymbol{\theta}, \mathrm{i} \boldsymbol{a}) \in \Omega_{\mathrm{Gal}}^{1}\left(G(M), \mathbb{R}^{4} \oplus \mathfrak{u}(1)\right)$
- Bargmann structure: Choice of \boldsymbol{a} with $\boldsymbol{\theta}$ corresponding to canonical solder form

Extending Galilei to Bargmann structures

- Bargmann group Barg $=\mathrm{Gal} \ltimes\left(\mathbb{R}^{4} \times \mathrm{U}(1)\right)$
- Extend Galilei frame bundle to Barg-bundle $B(M)=G(M) \times{ }_{\text {Gal }}$ Barg
- Connection on $B(M)=$ Galilei connection $\boldsymbol{\omega}+$ tensorial form

$$
(\boldsymbol{\theta}, \mathrm{i} \boldsymbol{a}) \in \Omega_{\mathrm{Gal}}^{1}\left(G(M), \mathbb{R}^{4} \oplus \mathfrak{u}(1)\right)
$$

- Bargmann structure: Choice of \boldsymbol{a} with $\boldsymbol{\theta}$ corresponding to canonical solder form
- Pulled back to M : extended coframe $\left(\mathrm{e}^{t}=\tau, \mathrm{e}^{a}, \mathrm{i} a\right)$
- Transformation under local boost of frame $v \rightarrow v-k^{a} \mathrm{e}_{a}$:

$$
\begin{equation*}
a \rightarrow a+k_{a} \mathrm{e}^{a}+\frac{1}{2}|k|^{2} \tau \tag{6}
\end{equation*}
$$

Extended torsion

- Exterior covariant derivative of $\left(\tau, \mathrm{e}^{a}, \mathrm{i} a\right)$: extended torsion

$$
\begin{equation*}
\mathrm{d}^{\omega}\left(\tau, \mathrm{e}^{a}, \mathrm{i} a\right)=\left(T^{t}, T^{a}, \mathrm{i} f\right) \tag{7}
\end{equation*}
$$

- Mass torsion $f=\mathrm{d} a+\omega_{a} \wedge \mathrm{e}^{a}=\mathrm{d} a+\Omega$

Extended torsion

- Exterior covariant derivative of $\left(\tau, \mathrm{e}^{a}, \mathrm{i} a\right)$: extended torsion

$$
\begin{equation*}
\mathrm{d}^{\omega}\left(\tau, \mathrm{e}^{a}, \mathrm{i} a\right)=\left(T^{t}, T^{a}, \mathrm{i} f\right) \tag{7}
\end{equation*}
$$

- Mass torsion $f=\mathrm{d} a+\omega_{a} \wedge \mathrm{e}^{a}=\mathrm{d} a+\Omega$
- For $0=\mathrm{d} \tau=T^{t}$: unique Galilei connection $\widetilde{\boldsymbol{\omega}}$ with vanishing extended torsion!

Extended torsion

- Exterior covariant derivative of $\left(\tau, \mathrm{e}^{a}, \mathrm{i} a\right)$: extended torsion

$$
\begin{equation*}
\mathrm{d}^{\omega}\left(\tau, \mathrm{e}^{a}, \mathrm{i} a\right)=\left(T^{t}, T^{a}, \mathrm{i} f\right) \tag{7}
\end{equation*}
$$

- Mass torsion $f=\mathrm{d} a+\omega_{a} \wedge \mathrm{e}^{a}=\mathrm{d} a+\Omega$
- For $0=\mathrm{d} \tau=T^{t}$: unique Galilei connection $\widetilde{\boldsymbol{\omega}}$ with vanishing extended torsion!
- For general $\boldsymbol{\omega}$: Newton-Cartan contortion

$$
\begin{equation*}
\Gamma_{\mu \nu}^{\rho}-\widetilde{\Gamma}_{\mu \nu}^{\rho}=\frac{1}{2} T_{\mu \nu}^{\rho}-T_{(\mu v)}^{\rho}+\tau_{(\mu} f_{v)}^{\rho}=: K_{\mu v}^{\rho} \tag{8}
\end{equation*}
$$

Teleparallel Newton-Cartan gravity

Axioms for teleparallel Newton-Cartan gravity

(1) Spacetime is a Galilei manifold (M, τ, h) with absolute time, endowed with a Bargmann structure and a flat Galilei connection ω,
(2) ideal clocks measure time as defined by τ,
(0) free test particles move on timelike curves γ solving

$$
\begin{equation*}
\left(\nabla_{\dot{\gamma}} \dot{\gamma}\right)^{\rho}=K^{\rho}{ }_{\mu \nu} \dot{\gamma}^{\mu} \dot{\gamma}^{\nu}, \tag{9}
\end{equation*}
$$

- the field equation

$$
\begin{equation*}
-D_{\sigma} K^{\sigma}{ }_{A B}+D_{A} K_{\mu B}^{\mu}-K_{\sigma B}^{\mu} T^{\sigma}{ }_{\mu A}+K_{\mu \sigma}^{\mu} K_{A B}^{\sigma}-K_{A \sigma}^{\mu} K^{\sigma}{ }_{\mu B}=4 \pi G \rho \tau_{A} \tau_{B} \tag{10}
\end{equation*}
$$

holds, where ρ is the mass density.

Teleparallel Newton-Cartan gravity

Axioms for teleparallel Newton-Cartan gravity

(1) Spacetime is a Galilei manifold (M, τ, h) with absolute time, endowed with a Bargmann structure and a flat Galilei connection ω,
(2) ideal clocks measure time as defined by τ,
(0) free test particles move on timelike curves γ solving

$$
\begin{equation*}
\left(\nabla_{\dot{\gamma}} \dot{\gamma}\right)^{\rho}=K^{\rho}{ }_{\mu \nu} \dot{\gamma}^{\mu} \dot{\gamma}^{\nu}, \tag{9}
\end{equation*}
$$

- the field equation

$$
\begin{equation*}
-D_{\sigma} K^{\sigma}{ }_{A B}+D_{A} K_{\mu B}^{\mu}-K_{\sigma B}^{\mu} T^{\sigma}{ }_{\mu A}+K_{\mu \sigma}^{\mu} K_{A B}^{\sigma}-K_{A \sigma}^{\mu} K^{\sigma}{ }_{\mu B}=4 \pi G \rho \tau_{A} \tau_{B} \tag{10}
\end{equation*}
$$

holds, where ρ is the mass density.

- LHS of (10) is $\widetilde{R}_{A B} \rightsquigarrow$ equivalent to usual NC gravity

Relation to other theories

(1) Recap of usual Newton-Cartan gravity

- Galilei manifolds
- Newton-Cartan gravityTeleparallel Galilei connections
- Bargmann structures
- Teleparallel Newton-Cartan gravity
(3) Relation to other theories
- Teleparallel NC from TEGR
- Recovering Newtonian gravity

PKS: Teleparallel Newton-Cartan gravity, in preparation

Teleparallel NC from TEGR

- Expand Lorentzian objects in c^{-1}

Teleparallel NC from TEGR

- Expand Lorentzian objects in c^{-1}
- Lorentzian tetrad (assume $\mathrm{d} \tau=0$):

$$
\begin{align*}
E_{\mu}^{0} & =c \tau_{\mu}+c^{-1} a_{\mu}+\mathrm{O}\left(c^{-3}\right), & E_{\mu}^{a} & =\mathrm{e}_{\mu}^{a}+\mathrm{O}\left(c^{-2}\right), \tag{11a}\\
E_{0}^{\mu} & =c^{-1} v^{\mu}+\mathrm{O}\left(c^{-3}\right), & E_{a}^{\mu} & =\mathrm{e}_{a}^{\mu}+\mathrm{O}\left(c^{-2}\right)
\end{align*}
$$

Teleparallel NC from TEGR

- Expand Lorentzian objects in c^{-1}
- Lorentzian tetrad (assume $\mathrm{d} \tau=0$):

$$
\begin{array}{ll}
E_{\mu}^{0}=c \tau_{\mu}+c^{-1} a_{\mu}+\mathrm{O}\left(c^{-3}\right), & E_{\mu}^{a}=\mathrm{e}_{\mu}^{a}+\mathrm{O}\left(c^{-2}\right), \\
E_{0}^{\mu}=c^{-1} v^{\mu}+\mathrm{O}\left(c^{-3}\right), & E_{a}^{\mu}=\mathrm{e}_{a}^{\mu}+\mathrm{O}\left(c^{-2}\right) \tag{11b}
\end{array}
$$

- Lorentzian local connection form:

$$
\begin{align*}
& \stackrel{L}{\omega}_{0}{ }_{0}=0, \quad \stackrel{\llcorner }{\omega}_{0}^{a}=c^{-1} \omega^{a}+\mathrm{O}\left(c^{-3}\right), \tag{12a}\\
& \omega^{\stackrel{a}{a}}{ }_{b}=\omega^{a}{ }_{b}+\mathrm{O}\left(c^{-2}\right) \tag{12b}
\end{align*}
$$

Teleparallel NC from TEGR

- Expand Lorentzian objects in c^{-1}
- Lorentzian tetrad (assume $\mathrm{d} \tau=0$):

$$
\begin{align*}
E_{\mu}^{0} & =c \tau_{\mu}+c^{-1} a_{\mu}+\mathrm{O}\left(c^{-3}\right), & E_{\mu}^{a}=\mathrm{e}_{\mu}^{a}+\mathrm{O}\left(c^{-2}\right), \tag{11a}\\
E_{0}^{\mu} & =c^{-1} v^{\mu}+\mathrm{O}\left(c^{-3}\right), & E_{a}^{\mu}=\mathrm{e}_{a}^{\mu}+\mathrm{O}\left(c^{-2}\right) \tag{11b}
\end{align*}
$$

- Lorentzian local connection form:

$$
\begin{align*}
& \stackrel{L}{\omega}_{0} 0=0, \quad \stackrel{\llcorner }{\omega}_{0}^{a}=c^{-1} \omega^{a}+\mathrm{O}\left(c^{-3}\right) \tag{12a}\\
& \omega^{L}{ }_{b}=\omega^{a}{ }_{b}+\mathrm{O}\left(c^{-2}\right) \tag{12b}
\end{align*}
$$

- \rightsquigarrow Galilei manifold and Bargmann structure!

Teleparallel NC from TEGR

- Expand Lorentzian objects in c^{-1}
- Lorentzian tetrad (assume $\mathrm{d} \tau=0$):

$$
\begin{align*}
E_{\mu}^{0} & =c \tau_{\mu}+c^{-1} a_{\mu}+\mathrm{O}\left(c^{-3}\right), & E_{\mu}^{a} & =\mathrm{e}_{\mu}^{a}+\mathrm{O}\left(c^{-2}\right), \tag{11a}\\
E_{0}^{\mu} & =c^{-1} v^{\mu}+\mathrm{O}\left(c^{-3}\right), & E_{a}^{\mu} & =\mathrm{e}_{a}^{\mu}+\mathrm{O}\left(c^{-2}\right)
\end{align*}
$$

- Lorentzian local connection form:

$$
\begin{align*}
& \stackrel{L}{\omega}_{0} 0=0, \quad \stackrel{\llcorner }{\omega}_{0}^{a}=c^{-1} \omega^{a}+\mathrm{O}\left(c^{-3}\right) \tag{12a}\\
& \omega^{L}{ }_{b}=\omega^{a}{ }_{b}+\mathrm{O}\left(c^{-2}\right) \tag{12b}
\end{align*}
$$

- \rightsquigarrow Galilei manifold and Bargmann structure!
- Lorentzian torsion expands to Galilean extended torsion:

$$
\left(T^{0}, \stackrel{L}{T}^{a}\right)=\left(c T^{t}+c^{-1} f+\mathrm{O}\left(c^{-3}\right), T^{a}+\mathrm{O}\left(c^{-2}\right)\right)
$$

Teleparallel NC from TEGR

- Expand Lorentzian objects in c^{-1}
- Lorentzian tetrad (assume $\mathrm{d} \tau=0$):

$$
\begin{array}{ll}
E_{\mu}^{0}=c \tau_{\mu}+c^{-1} a_{\mu}+\mathrm{O}\left(c^{-3}\right), & E_{\mu}^{a}=\mathrm{e}_{\mu}^{a}+\mathrm{O}\left(c^{-2}\right), \\
E_{0}^{\mu}=c^{-1} v^{\mu}+\mathrm{O}\left(c^{-3}\right), & E_{a}^{\mu}=\mathrm{e}_{a}^{\mu}+\mathrm{O}\left(c^{-2}\right)
\end{array}
$$

- Lorentzian local connection form:

$$
\begin{align*}
& \stackrel{\omega}{\omega}_{0} 0=0, \quad \stackrel{\llcorner }{\omega}_{0}^{a}=c^{-1} \omega^{a}+\mathrm{O}\left(c^{-3}\right), \tag{12a}\\
& \omega^{\frac{L}{a}}{ }_{b}=\omega^{a}{ }_{b}+\mathrm{O}\left(c^{-2}\right) \tag{12b}
\end{align*}
$$

- \rightsquigarrow Galilei manifold and Bargmann structure!
- Lorentzian torsion expands to Galilean extended torsion:

$$
\left(\stackrel{\mathrm{T}}{ }_{0}, \stackrel{\mathrm{~T}}{ }_{a}^{a}\right)=\left(c T^{t}+c^{-1} f+\mathrm{O}\left(c^{-3}\right), T^{a}+\mathrm{O}\left(c^{-2}\right)\right)
$$

- Field equation of TEGR \rightsquigarrow trace-reverse $\xrightarrow{c \rightarrow \infty}$ teleparallel NC field eq.!

Recovering Newtonian gravity

- 'Gauge fix' to $T^{a}{ }_{b c}=0$

Recovering Newtonian gravity

- 'Gauge fix' to $T^{a}{ }_{b c}=0$ Deatils
- Work in rigid, non-rotating frame (\rightsquigarrow 'absolute rotation')

Recovering Newtonian gravity

- 'Gauge fix' to $T^{a}{ }_{b c}=0$
- Work in rigid, non-rotating frame (\rightsquigarrow 'absolute rotation')
- $\Longrightarrow \mathrm{d} a=\mathrm{d} \phi \wedge \tau$

Recovering Newtonian gravity

- 'Gauge fix' to $T^{a}{ }_{b c}=0$
- Work in rigid, non-rotating frame (\rightsquigarrow 'absolute rotation')
- $\Longrightarrow \mathrm{d} a=\mathrm{d} \phi \wedge \tau$
- Field equation turns into

$$
\begin{equation*}
D_{a} D^{a} \phi=4 \pi G \rho \tag{13}
\end{equation*}
$$

Recovering Newtonian gravity

- 'Gauge fix' to $T^{a}{ }_{b c}=0$
- Work in rigid, non-rotating frame (\rightsquigarrow 'absolute rotation')
- $\Longrightarrow \mathrm{d} a=\mathrm{d} \phi \wedge \tau$
- Field equation turns into

$$
\begin{equation*}
D_{a} D^{a} \phi=4 \pi G \rho \tag{13}
\end{equation*}
$$

- For $\left[\mathrm{e}_{a}, v\right]=0$: equation of motion becomes

$$
\begin{equation*}
\ddot{\gamma}^{a}+\omega_{c}^{a}{ }_{b} \dot{\gamma}^{c} \dot{\gamma}^{b}=-\partial^{a} \phi \tag{14}
\end{equation*}
$$

Conclusion

Summary

- Bargmann structure formalism for NC geometry \rightsquigarrow natural notion of teleparallel Galilei connections
- Teleparallel formulation of NC gravity
- Arises from TEGR for $c \rightarrow \infty$, reproduces Newtonian gravity

Conclusion

Summary

- Bargmann structure formalism for NC geometry \rightsquigarrow natural notion of teleparallel Galilei connections
- Teleparallel formulation of NC gravity
- Arises from TEGR for $c \rightarrow \infty$, reproduces Newtonian gravity

Outlook

- TNC generalisation $(\mathrm{d} \tau \neq 0)$? \rightsquigarrow probably needs different symmetry algebra ('TNC type I')
- Action formulation?
- Modified teleparallel gravity?
- Theories with more general geometry?
- 'Covariant' post-Newtonian limit of (modified) teleparallel gravity?

Conclusion

Summary

- Bargmann structure formalism for NC geometry \rightsquigarrow natural notion of teleparallel Galilei connections
- Teleparallel formulation of NC gravity
- Arises from TEGR for $c \rightarrow \infty$, reproduces Newtonian gravity

Outlook

- TNC generalisation $(\mathrm{d} \tau \neq 0)$? \rightsquigarrow probably needs different symmetry algebra ('TNC type I^{\prime})
- Action formulation?
- Modified teleparallel gravity?
- Theories with more general geometry?
- 'Covariant' post-Newtonian limit of (modified) teleparallel gravity?

Many thanks for your attention!

Appendix: details

4 Details on recovery of Newtonian gravity

Gauge fixing the purely spatial torsion

- Purely spatial part of field equation: $\widetilde{R}_{a b}=0 \stackrel{3 D}{ }$ spatial metric flat
- \Longrightarrow We may assume

$$
\begin{equation*}
T_{b c}^{a}=0 \tag{15}
\end{equation*}
$$

consistently with flatness

Trautman's 'absolute rotation' condition

- Usual NC: To recover Newtonian gravity, assume $\widetilde{R}^{a b}{ }_{\mu \nu}=0$
$\bullet \Longleftrightarrow \exists$ rigid, non-rotating frames
- Such frames in teleparallel NC:

$$
\begin{align*}
\omega_{(a b)} & =T_{(a b) t} \tag{16a}\\
\omega_{[a b]} & =\frac{1}{2} f_{a b} \tag{16b}
\end{align*}
$$

