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Introduction

Time in Newtonian physics:

Absolute time:
a parameter t ∈ R according to which systems evolve,
on which all observers agree.

That’s all.

. . . or is it?

This talk: review of Newtonian concept of time from a spacetime point of view, clarifying
its relation to time in special and general relativity

Origin in Newton–Cartan gravity: geometric reformulation of Newtonian gravity,
developed for clearer understanding of relationship to GR (Cartan 1923, Friedrichs 1926/28,
Trautman 1960s, Künzle 1970s, Ehlers 1981)
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1 Introduction

2 Newton–Galilei spacetime
Geometry
The relation to special relativity

3 General Newtonian spacetime
Geometry
The relation to general relativity
Beyond Newton: strong gravity and time dilation

4 Conclusion
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Geometry
The relation to special relativity

Newtonian physics: infinitesimal temporal structure
In spacetime

, at an event p, consider V = {directions to infinitesimally close events}

spacetime

p

V

Σ

future

past

Newtonian temporal structure at p:
Hyperplane Σ of directions to simultaneous events: spacelike vectors
Other directions: timelike, divided into future and past
To every vector v ∈ V, assign temporal length τ(v) ∈ R: time elapsed along v
Described by clock form τ ∈ V∗, Σ = ker τ

6 / 29 Philip K. Schwartz Time in Newtonian physics from a spacetime perspective



Introduction
Newton–Galilei spacetime

General Newtonian spacetime
Conclusion

Geometry
The relation to special relativity

Newtonian physics: infinitesimal temporal structure
In spacetime, at an event p

, consider V = {directions to infinitesimally close events}

spacetime

p

V

Σ

future

past

Newtonian temporal structure at p:
Hyperplane Σ of directions to simultaneous events: spacelike vectors
Other directions: timelike, divided into future and past
To every vector v ∈ V, assign temporal length τ(v) ∈ R: time elapsed along v
Described by clock form τ ∈ V∗, Σ = ker τ

6 / 29 Philip K. Schwartz Time in Newtonian physics from a spacetime perspective



Introduction
Newton–Galilei spacetime

General Newtonian spacetime
Conclusion

Geometry
The relation to special relativity

Newtonian physics: infinitesimal temporal structure
In spacetime, at an event p, consider V = {directions to infinitesimally close events}

spacetime

p

V

Σ

future

past

Newtonian temporal structure at p:
Hyperplane Σ of directions to simultaneous events: spacelike vectors
Other directions: timelike, divided into future and past
To every vector v ∈ V, assign temporal length τ(v) ∈ R: time elapsed along v
Described by clock form τ ∈ V∗, Σ = ker τ

6 / 29 Philip K. Schwartz Time in Newtonian physics from a spacetime perspective



Introduction
Newton–Galilei spacetime

General Newtonian spacetime
Conclusion

Geometry
The relation to special relativity

Newtonian physics: infinitesimal temporal structure
In spacetime, at an event p, consider V = {directions to infinitesimally close events}

spacetime

p

V

Σ

future

past

Newtonian temporal structure at p:

Hyperplane Σ of directions to simultaneous events: spacelike vectors
Other directions: timelike, divided into future and past
To every vector v ∈ V, assign temporal length τ(v) ∈ R: time elapsed along v
Described by clock form τ ∈ V∗, Σ = ker τ

6 / 29 Philip K. Schwartz Time in Newtonian physics from a spacetime perspective



Introduction
Newton–Galilei spacetime

General Newtonian spacetime
Conclusion

Geometry
The relation to special relativity

Newtonian physics: infinitesimal temporal structure
In spacetime, at an event p, consider V = {directions to infinitesimally close events}

spacetime

p

V

Σ

future

past

Newtonian temporal structure at p:
Hyperplane Σ of directions to simultaneous events: spacelike vectors

Other directions: timelike, divided into future and past
To every vector v ∈ V, assign temporal length τ(v) ∈ R: time elapsed along v
Described by clock form τ ∈ V∗, Σ = ker τ

6 / 29 Philip K. Schwartz Time in Newtonian physics from a spacetime perspective



Introduction
Newton–Galilei spacetime

General Newtonian spacetime
Conclusion

Geometry
The relation to special relativity

Newtonian physics: infinitesimal temporal structure
In spacetime, at an event p, consider V = {directions to infinitesimally close events}

spacetime

p

V

Σ

future

past

Newtonian temporal structure at p:
Hyperplane Σ of directions to simultaneous events: spacelike vectors
Other directions: timelike, divided into future and past

To every vector v ∈ V, assign temporal length τ(v) ∈ R: time elapsed along v
Described by clock form τ ∈ V∗, Σ = ker τ

6 / 29 Philip K. Schwartz Time in Newtonian physics from a spacetime perspective



Introduction
Newton–Galilei spacetime

General Newtonian spacetime
Conclusion

Geometry
The relation to special relativity

Newtonian physics: infinitesimal temporal structure
In spacetime, at an event p, consider V = {directions to infinitesimally close events}

spacetime

p

V

Σ

future

past

Newtonian temporal structure at p:
Hyperplane Σ of directions to simultaneous events: spacelike vectors
Other directions: timelike, divided into future and past
To every vector v ∈ V, assign temporal length τ(v) ∈ R: time elapsed along v

Described by clock form τ ∈ V∗, Σ = ker τ

6 / 29 Philip K. Schwartz Time in Newtonian physics from a spacetime perspective



Introduction
Newton–Galilei spacetime

General Newtonian spacetime
Conclusion

Geometry
The relation to special relativity

Newtonian physics: infinitesimal temporal structure
In spacetime, at an event p, consider V = {directions to infinitesimally close events}

spacetime

p

V

Σ

future

past

Newtonian temporal structure at p:
Hyperplane Σ of directions to simultaneous events: spacelike vectors
Other directions: timelike, divided into future and past
To every vector v ∈ V, assign temporal length τ(v) ∈ R: time elapsed along v
Described by clock form τ ∈ V∗, Σ = ker τ

6 / 29 Philip K. Schwartz Time in Newtonian physics from a spacetime perspective



Introduction
Newton–Galilei spacetime

General Newtonian spacetime
Conclusion

Geometry
The relation to special relativity

Spatial measurements

V

Σ

Spatial distances defined between infinitesimally close simultaneous events

Equivalently: spatial lengths of spacelike vectors scalar product (Σ)h on Σ = ker τ ⊂ V

Can encode (Σ)h ∈ Σ∗ ⊗ Σ∗ in spacetime tensor h ∈ V ⊗V, hµν = hνµ:

h : V∗ � Σ∗
(Σ)h−1
−→∼= Σ ↪→ V

Space metric hµν, signature (0+++), hµντν = 0
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Newton–Galilei spacetime: space and time of Newton

Easiest case: spacetime is an affine space A over 4d vector space V

τ ∈ V∗, h ∈ V ⊗V define geometry globally: Newton–Galilei spacetime (A, τ, h)
Hyperplanes of space with well-defined temporal distance—absolute time!
Kinematics: inertial observers move on timelike lines
Two inertial observers: different time axes (for adapted coordinates), same spatial
hyperplanes
Time being absolute means time durations and simultaneity being absolute.

8 / 29 Philip K. Schwartz Time in Newtonian physics from a spacetime perspective



Introduction
Newton–Galilei spacetime

General Newtonian spacetime
Conclusion

Geometry
The relation to special relativity

Newton–Galilei spacetime: space and time of Newton

Easiest case: spacetime is an affine space A over 4d vector space V
τ ∈ V∗, h ∈ V ⊗V define geometry globally: Newton–Galilei spacetime (A, τ, h)

Hyperplanes of space with well-defined temporal distance—absolute time!
Kinematics: inertial observers move on timelike lines
Two inertial observers: different time axes (for adapted coordinates), same spatial
hyperplanes
Time being absolute means time durations and simultaneity being absolute.

8 / 29 Philip K. Schwartz Time in Newtonian physics from a spacetime perspective



Introduction
Newton–Galilei spacetime

General Newtonian spacetime
Conclusion

Geometry
The relation to special relativity

Newton–Galilei spacetime: space and time of Newton

Easiest case: spacetime is an affine space A over 4d vector space V
τ ∈ V∗, h ∈ V ⊗V define geometry globally: Newton–Galilei spacetime (A, τ, h)
Hyperplanes of space with well-defined temporal distance—absolute time!

Kinematics: inertial observers move on timelike lines
Two inertial observers: different time axes (for adapted coordinates), same spatial
hyperplanes
Time being absolute means time durations and simultaneity being absolute.

8 / 29 Philip K. Schwartz Time in Newtonian physics from a spacetime perspective



Introduction
Newton–Galilei spacetime

General Newtonian spacetime
Conclusion

Geometry
The relation to special relativity

Newton–Galilei spacetime: space and time of Newton

Easiest case: spacetime is an affine space A over 4d vector space V
τ ∈ V∗, h ∈ V ⊗V define geometry globally: Newton–Galilei spacetime (A, τ, h)
Hyperplanes of space with well-defined temporal distance—absolute time!
Kinematics: inertial observers move on timelike lines

Two inertial observers: different time axes (for adapted coordinates), same spatial
hyperplanes
Time being absolute means time durations and simultaneity being absolute.

8 / 29 Philip K. Schwartz Time in Newtonian physics from a spacetime perspective



Introduction
Newton–Galilei spacetime

General Newtonian spacetime
Conclusion

Geometry
The relation to special relativity

Newton–Galilei spacetime: space and time of Newton

Easiest case: spacetime is an affine space A over 4d vector space V
τ ∈ V∗, h ∈ V ⊗V define geometry globally: Newton–Galilei spacetime (A, τ, h)
Hyperplanes of space with well-defined temporal distance—absolute time!
Kinematics: inertial observers move on timelike lines
Two inertial observers: different time axes (for adapted coordinates), same spatial
hyperplanes

Time being absolute means time durations and simultaneity being absolute.

8 / 29 Philip K. Schwartz Time in Newtonian physics from a spacetime perspective



Introduction
Newton–Galilei spacetime

General Newtonian spacetime
Conclusion

Geometry
The relation to special relativity

Newton–Galilei spacetime: space and time of Newton

Easiest case: spacetime is an affine space A over 4d vector space V
τ ∈ V∗, h ∈ V ⊗V define geometry globally: Newton–Galilei spacetime (A, τ, h)
Hyperplanes of space with well-defined temporal distance—absolute time!
Kinematics: inertial observers move on timelike lines
Two inertial observers: different time axes (for adapted coordinates), same spatial
hyperplanes
Time being absolute means time durations and simultaneity being absolute.

8 / 29 Philip K. Schwartz Time in Newtonian physics from a spacetime perspective



Introduction
Newton–Galilei spacetime

General Newtonian spacetime
Conclusion

Geometry
The relation to special relativity

Galilei transformations

Galilei transformations are automorphisms of Newton–Galilei spacetime

IGal := Aut(A, τ, h)

= {affine maps A→ A leaving temporal and spatial lengths invariant}
= {(X, v) ∈ Aff(A) ∼= GL(V)n V : X>τ = τ, (X⊗ X)(h) = h} (1)

Choosing origin o ∈ A and reference four-velocity v ∈ V, τ(v) = 1: homogeneous group
consists of rotations and boosts

Gal ∼= O(Σ)n Σ, (2)

acting on spacetime points according to

(R, k) · p = o + R(Pv(p− o)) + τ(p− o)k, (3)

where Pv = id− v⊗ τ : V → V is the projector onto Σ along v

Pure boost:
(

t
x

)
7→
(

t
x + tk

)
, time axis

{(
t
0

)
: t ∈ R

}
7→
{(

t
tk

)
: t ∈ R

}
is tilted
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Newton–Galilei from Minkowski: causal structure

ker τ

ηµντν

c→ ∞

ker τ

Minkowski spacetime

, reference inertial state of motion =⇒ Newtonian limit ‘c→ ∞’:
lightcones flatten to Newtonian causal structure

Physically: v/c→ 0, i.e. large t limit for fixed x

Reference: choice of τ! Expand ηµν = −c2τµτν + O(c0), ηµν = hµν + O(c−2)
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Newton–Galilei from Minkowski: geometric measurements

Choose τ, assume power series expansion ηµν = −c2τµτν + O(c0), ηµν = hµν + O(c−2)

ηµν inverse to ηµν =⇒ hµντν = 0, h positive semidefinite

Minkowski proper time of a future-directed timelike vector v:

c−1
√
−η(v, v) =

√
−c−2η(v, v) =

√
(τ(v))2 + O(c−2)

= τ(v) + O(c−2)
c→∞−→ τ(v) (4)

Newtonian time durations arise from Minkowskian ones!

Same for spatial metric: η(v, w)
c→∞−→ (Σ)h(v, w) for v, w spacelike
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c−1
√
−η(v, v) =

√
−c−2η(v, v) =

√
(τ(v))2 + O(c−2)

= τ(v) + O(c−2)
c→∞−→ τ(v) (4)

Newtonian time durations arise from Minkowskian ones!

Same for spatial metric: η(v, w)
c→∞−→ (Σ)h(v, w) for v, w spacelike
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Galilei from Poincaré: group contraction

İnönü–Wigner contraction from Poincaré to Galilei group:

Poincaré algebra: Translation generators Pµ, Lorentz transformation generators Jµν, brackets

[Pµ, Pν] = 0, (5a)

[Jµν, Pρ] = ηµρPν − ηνρPµ , (5b)

[Jµν, Jρσ] =
(
ηµρ Jνσ − (µ↔ ν)

)
− (ρ↔ σ) (5c)

Time translation generator cP0 =: −H, boost generator c−1 Ja0 =: Ba

Non-trivial Poincaré relations are

[Ba, H] = Pa , [Ba, Pb] = c−2δab H, [Ba, Bb] = −c−2 Jab , (6a)

[Jab, Pc] = δacPb − δbcPa , [Jab, Bc] = δacBb − δbcBa , (6b)

[Jab, Jcd] =
(
ηac Jbd − (a↔ b)

)
− (c↔ d) (6c)

Limit c→ ∞ gives inhomogeneous Galilei algebra!
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Galilei manifolds

M

Spacetime no longer an affine space—τ (and h) may change from event to event!
 Newtonian temporal structure only infinitesimally

Galilei manifold (M, τ, h), τ ∈ Ω1(M) a one-form, h ∈ Γ(TM⊗ TM)

Time elapsed along curve γ =
∫

γ
τ: ‘sum up infinitesimal durations’

(hom.) Galilei group as structure group for reduction of the frame bundle—local Galilei
invariance
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Absolute time?

Aγ2 γ1

General Galilei manifold (M, τ, h): no hypersurfaces of space! (distribution ker τ not
integrable)

Frobenius’ theorem: Hypersurfaces Σ of space exist ⇐⇒ τ ∧ dτ = 0 absolute
simultaneity (then h defines Riemannian metrics (Σ)h on them)
Even then: time difference not well-defined! For two curves between the same events with
‘filling surface’ A: ∫

γ1

τ −
∫

γ2

τ =
∫

∂A
τ =

∫
A

dτ (7)

Time difference between events well-defined ⇐⇒ dτ = 0 absolute time
dτ = 0 =⇒ locally τ = dt, with time function t
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Galilei connections

For kinematics: need to relate vectors at different events notion of parallel transport!
Affine space has natural parallel transport, now need to specify

Galilei connection ∇: covariant derivative operator on TM compatible with τ, h

Equivalently: notion of parallel transport that leaves temporal lengths of vectors and spatial
lengths of spacelike vectors invariant

Newton–Cartan gravity: describe Newtonian gravity by curved ∇ (i.e. parallel transport
has holonomy)
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Torsion and time

v

w

Parv(w)

Parw(v) T(v, w)

Torsion T of connection ∇: measures how infinitesimal parallelograms fail to close

Compatibility with τ =⇒ Temporal part of torsion of ∇ is dτ, i.e. τ(T(·, ·)) = dτ

Absolute simultaneity, τ ∧ dτ = 0 ⇐⇒ torsion of spacelike vectors is spacelike
⇐⇒ spacelike infinitesimal parallelograms close temporally

Absolute time, dτ = 0 ⇐⇒ all torsion is spacelike
⇐⇒ all infinitesimal parallelograms close temporally

Curvature and space
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Newtonian limits of Lorentzian manifolds

Lorentzian manifold

, reference state of motion =⇒ c→ ∞: local lightcones flatten to
Newtonian causal structure

As for special relativity: limit determined by choice of τ, expansion
gµν = −c2τµτν + O(c0), gµν = hµν + O(c−2)
Structure group contracted from Lorentz to (hom.) Galilei
Lorentzian proper time:

c−1
∫

γ

√
−g(·, ·) =

∫
γ

τ + O(c−2) (8)
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The Newtonian limit and absolute time

Power series expansion of Lorentzian metric: gµν = −c2τµτν + O(c0), gµν = hµν + O(c−2)

Expansion of Christoffel symbols of g:

g

Γρ
µν = −c2hρστ(µ(dτ)ν)σ + O(c0) (9)

Levi-Civita connection of g has regular c→ ∞ limit ⇐⇒ dτ = 0, i.e. absolute time!

In that case: limit ∇ compatible with τ, h

Trace-reversed Einstein equation for (M, g) goes over to Newton–Cartan field equation for
(M, τ, h,∇)
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Example: the Newtonian limit of Schwarzschild

g = −
(

1− 2GM
c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1
dr2 + r2(dθ2 + sin2θ dϕ2)

= −c2dt2 + O(c0)

(10a)

g−1 = −
(

1− 2GM
c2r

)−1
c−2∂t ⊗ ∂t +

(
1− 2GM

c2r

)
∂r ⊗ ∂r + r−2(∂θ ⊗ ∂θ + sin−2θ ∂ϕ ⊗ ∂ϕ)

= ∂r ⊗ ∂r + r−2(∂θ ⊗ ∂θ + sin−2θ ∂ϕ ⊗ ∂ϕ) + O(c−2)

(10b)

τ = dt—absolute time!

h induces standard Euclidean metric on spatial hypersurfaces

∇ gives Newtonian trajectories

Same limit for Kerr (assuming regularity outside horizon for all values of c)
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Expanding tetrads

Consider Lorentzian tetrad / orthonormal frame (E0, Ea) of vector fields, g(EA, EB) = ηAB,
and dual frame (E0, Ea) =⇒ metric g = ηABEA ⊗ EB, inverse metric g−1 = ηABEA ⊗ EB

Want g = −c2τ ⊗ τ + O(c0), g−1 = h + O(c−2) =⇒ expand

E0 = cτ (11a)

Ea = (11b)

E0 = (11c)

Ea = ea + O(c−2) (11d)

 get h = δabea ⊗ eb

Family of rigidly moving non-rotating observers, described by unit timelike vector field v
=⇒ Newtonian potential φ = a(v)—Newtonian potential encoded in timelike basis
covector!

a transforms under local Galilei boosts v 7→ v− kaea as a 7→ a + kaea + k2τ
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Beyond Newton: strong gravity and time dilation

Saw above: in Newtonian limit, lim
c→∞

g

Γρ
µν < ∞ ⇐⇒ dτ = 0

Relax condition lim
c→∞

g

Γρ
µν < ∞, i.e. allow dτ 6= 0

Trace-reversed Einstein equation at c4 =⇒ τ ∧ dτ = 0: we still have spatial hypersurfaces!

Limit c→ ∞: no absolute time (so not properly Newtonian), but Newtonian causality, with
absolute simultaneity

Elapsed time depends on worldline—‘time dilation’!

‘Torsional Newton–Cartan gravity’ (TNC)

D Van den Bleeken: Torsional Newton–Cartan gravity from the large c expansion of general relativity,
arXiv:1703.03459, CQG 34, 185004 (2017)

D Hansen, J Hartong, NA Obers: Gravity between Newton and Einstein, arXiv:1904.05706, IJMPD 28, 1944010 (2019)
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Example: another ‘Newtonian’ limit of Schwarzschild

Consider Schwarzschild radius rS as c-independent near-horizon / strong-gravity limit

g = −
(

1− rS
r

)
c2dt2 +

(
1− rS

r

)−1
dr2 + r2(dθ2 + sin2θ dϕ2)

= −c2
(

1− rS
r

)
dt2 + O(c0)

(12a)

g−1 = −
(

1− rS
r

)−1
c−2∂t ⊗ ∂t +

(
1− rS

r

)
∂r ⊗ ∂r + r−2(∂θ ⊗ ∂θ + sin−2θ ∂ϕ ⊗ ∂ϕ)

=
(

1− rS
r

)
∂r ⊗ ∂r + r−2(∂θ ⊗ ∂θ + sin−2θ ∂ϕ ⊗ ∂ϕ) + O(c−2)

(12b)

τ =
√

1− rS
r dt captures gravitational time dilation

TNC trajectories after taking c→ ∞ yield perihelion precession!
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g = −
(

1− rS
r

)
c2dt2 +

(
1− rS

r

)−1
dr2 + r2(dθ2 + sin2θ dϕ2)

= −c2
(

1− rS
r

)
dt2 + O(c0) (12a)

g−1 = −
(

1− rS
r

)−1
c−2∂t ⊗ ∂t +

(
1− rS

r

)
∂r ⊗ ∂r + r−2(∂θ ⊗ ∂θ + sin−2θ ∂ϕ ⊗ ∂ϕ)

=
(

1− rS
r

)
∂r ⊗ ∂r + r−2(∂θ ⊗ ∂θ + sin−2θ ∂ϕ ⊗ ∂ϕ) + O(c−2) (12b)

τ =
√

1− rS
r dt captures gravitational time dilation

TNC trajectories after taking c→ ∞ yield perihelion precession!
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Conclusion

Newtonian spacetime structure is captured by a degenerate metric structure (τ, h) and a
compatible connection.

Having an absolute notion of time is stronger than having an absolute notion of
simultaneity, and neither is necessary for (pointwise) Newtonian causality.

Standard Newtonian physics, i.e. locally Galilei-relativistic physics with absolute time, is
only a special limiting case of locally Poincaré-relativistic physics.

Relaxing the demand for absolute time allows to capture ‘gravitational time dilation’ effects
in a theory with Newtonian causality.

Many thanks for your attention!
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Appendix: Details

5 Aspects of Newton–Cartan gravity
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Aspects of Newton–Cartan gravity

Curvature and space

Newton–Cartan gravity: Galilei manifold (M, τ, h) with absolute time (dτ = 0) and
torsion-free Galilei connection ∇ (plus Rµ ν

ρ σ = Rν µ
σ ρ)

Newton–Cartan field equation:
Rµν = 4πGρτµτν (13)

=⇒ spacetime Ricci tensor vanishes on spacelike vectors

Compatibility with h, torsion-freeness =⇒ connection induced by ∇ on space is
Levi-Civita connection

∴ field equation =⇒ space is Ricci-flat 3d
=⇒ space is flat

Back
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